В папке нет товаров

Каталог товаров

Посетите наш магазин:

г. Минск
ул. Домбровская 10, к.26
(ст.м. Кунцевщина)

показать на карте

Принимаем к оплате:

Есть вопросы?

Задайте их нашему консультанту.
iven-trade

Подписаться на рассылку:


802.одиннадцать чего там ещё? Почему WiFi – отстой, и что с этим делать

Хорошая новость в том, что если правильно его построить, он уже не будет таким отстойным

 Когда сети на основе стандарта беспроводной связи 802.11b в конце 90-х вышли на рынок, то на бумаге они выглядели прекрасно. Они обещали «11 Мбит/с» по сравнению со скоростью 10 Мбит/с по проводам Ethernet, и можно было подумать, что беспроводная сеть на самом деле работает быстрее, чем Ethernet. Прошло немало времени, прежде чем мы познакомились с беспроводными сетями – смартфоны тогда ещё не выстрелили, ноутбуки были чрезвычайно дорогими, маломощными и тяжёлыми. А мы уже ставил в офисы своим клиентам и себе домой Fast Ethernet (100 Мбит/с), так что идея урезания скорости на 90% нас не привлекала.

 В начале 2000-х всё начало меняться. Ноутбуки уменьшались, становились легче и дешевле – а ещё в них стали встраивать WiFi. Малый бизнес начал присматриваться к обещанным стандартом «11 Мбит/с» и размышлять – раз 10 Мбит/с в старом офисе хватало, почему бы не поставить в новом беспроводную сеть? Наше первое знакомство с WiFi состоялось, когда мы разбирались с последствиями такого решения, и первое впечатление оказалось плохим. Оказывается, что «11 Мбит/с» – это максимальный физический уровень чистого битрейта, а не скорость, с которой реальные данные смогут передаваться между компьютерами. На практике он был не особенно лучше диалапа – как по скорости, так и по надёжности. На самом деле, если разместить все устройства довольно близко друг к другу и к точке доступа, то можно было ожидать, в лучшем случае, 1 Мбит/с – около 125 Кб/с. А так было ещё хуже – если десять компьютеров пытаются достучаться до сервера, нужно поделить эти 125 Кб/с и получить 12,5 Кб/с для каждого из них.



Роутер D-Link DI-514 802.11b, довольно неплохой роутер для своего времени. Для этого тёмного и страшного времени.

И когда все, в общем-то, уже привыкли к тому, что 802.11b – это отстой, появился 802.11g. Он обещал скорость в 54 Мбит/с, вполовину медленнее, чем Fast Ethernet, но в 5 раз быстрее, чем обычный Ethernet! Да? Нет. Так же, как и в случае с 802.11g, рекламируемая скорость обозначала максимальный физический уровень чистого битрейта, а не то, что вы сможете увидеть на индикаторе копирования. И точно так же, как в случае с 802.11b, в лучшем случае вы получали 1/10 от этой скорости – порядка 5 Мбит/с – и разделяли эти 5 Мбит/с между всеми компьютерами сети, а не получали её для каждого из них.

В 2010 был представлен 802.11n, обещавший 600 Мбит/с. Офигеть! Ладно, то есть, он не такой быстрый, как гигабитный Ethernet, стоимость которого как раз в то время упала до приемлемого уровня, но это ведь в 6 раз быстрее, чем Fast Ethernet, да? Опять-таки – разумно было ожидать 1/10 от этой скорости. Возможно. При хорошей погоде. Для одного устройства.

Когда в конце 2013 года на рынок вышел 802.11ac, коробки в магазинах заявляли всё более и более удивительные скорости, многие из которых были в несколько раз выше, чем максимальная скорость потребительского проводного интернета. Годы шли, и они заявляли 1,3 Гбит/с! 2,7 Гбит/с! 5,3 Гбит/с! Но к тому времени мы уже перестали обращать на них внимание. Маркетологи вцепились в биты зубами и не собирались их отпускать. WiFi даже не приближается по скорости к проводному интернету; реклама врёт, ясно-понятно.

Давно перестав восхищаться WiFi, мы очень удивились, когда WiFi mesh-сети взорвали рынок в 2016, и в результате мы начали в них разбираться.


Распакуем рекламную упаковку

Допустим, коробка с беспроводным роутером предлагает вам:

Роутер AC5300 с прорывной трёхдиапазонной WiFi технологией с уникальными скоростями беспроводной связи до 5 322 Мбит/с. Благодаря потокам данных 4х4 их можно комбинировать при помощи технологий формирования луча и MU-MIMO для увеличения дальности и надёжности!

Реальный текст с коробки, между прочим. И этим занимается не только D-Link – то же самое делают Netgear, Linksys, ASUS и TP-Link. Сейчас мы уже знаем, что это никак не означает, что мы подключим ноутбук и начнём скачивать файлы со скоростью 600 Мб/с. Но что же это значит?

Дело начинает запутываться, если попытаться расшифровать рейтинг скорости AC5300. Эти цифры получаются, если взять скорость физического уровня каждого передатчика в роутере, умноженное на максимальное количество MIMO-потоков и всё это сложить. DIR-895L/R работает в трёх диапазонах и может передавать и получать на трёх разных WiFi каналах одновременно: два канала на 5 ГГц и один на 2,4 ГГц. Если предположить, что соседские сети вам не мешают, то вы можете подключить три устройства – ноут, смарт и планшет – одновременно к разным передатчикам и по разным каналам. Пока неплохо!

У нас есть два передатчика на 5 ГГц с каналами шириной в 80 МГц и передатчик на 2,4 ГГц с каналом на 40 МГц. Каждый из них поддерживает до 4 потоков MIMO. К сожалению, цифры не сходятся – 433 Мбит/с на канале 5 ГГц шириной 80 ГГц, умноженный на 4 потока, даёт 1 732 Мбит/с, а D-Link заявляет от 2 166 Мбит/с на передатчик в 5 ГГц. Откуда берутся лишние 108,5 Мбит/с? Простого ответа не найти. Но, в зависимости от уровня цинизма, это либо «проприетарное расширение 802.11, которое ваше устройство может поддерживать, а может и не поддерживать, со сжатием, которое может подходить к вашим данным, а может и не подходить», либо «рекламная фигня». Это уже стандартная практика, из-за которой 3х3 роутеры с двумя диапазонами внезапно превращаются из «AC1700» в «AC1900».

Ещё хуже выходит, если изучить часть касательно 2,4 ГГц того самого рейтинга «AC5300». D-Link заявляет скорость 1000 Мбит/с для передатчика 2,4 ГГц. Скорость физического уровня для ширины в 40 МГц каналов 802.11n 2.4ГГц составляет 150 Мбит/с, и 150 Мбит/с, помноженное на 4 потока MIMO = 600 Мбит/с. Куда делись 400 Мбит/с? Каждый решает сам. Судя по всему, они приписали себе дополнительные 50 Мбит/с на канал, предполагая модуляцию 256-QAM на 2,4 ГГц, хотя это нестандартно и не одобрено IEEE, и такую вещь мало кто будет поддерживать. Это уже 800 Мбит/с. Всё ещё не хватает 200, чтобы дотянуть до 1000 Мбит/с, но это те же самые 20%, которые D-Link приписал себе за «сжатие» данных на частоте 5 ГГц. Вероятно.



Что бывает, если не сдерживать рекламный отдел. Не хватает только наклейки «Type R»

Если из всего этого вы делаете вывод, что скоростной рейтинг AC всегда врёт, вы недалеки от истины. Вернёмся к тому, что мы можем на самом деле, реально, возможно, ну типа, ожидать от всего этого.

Начнём с этого «4×4 MIMO». Очень хорошо, что он есть у роутера, но у клиентских устройств – ноутбуков, планшетов, смартфонов – его нет. По состоянию на февраль 2017 подавляющее большинство устройств поддерживают либо 1 канал, либо 2x2. Дополнительные каналы будут лишними, если устройства не смогут их использовать. Вы можете решить, что в этом нет ничего плохого; можно использовать два MIMO-канала для ноутбука, и два – для планшета. Пардоньте, но нет – это MU-MIMO, который ваш роутер может поддерживать, может не поддерживать – но ваши устройства однозначно его не поддерживают. (Мало какие флагманские смартфоны поддерживают его – к примеру, Galaxy S7 – но единственные карты для ноутбуков с поддержкой MU-MIMO, обнаруженные нами, не продаются и поставляются только производителям). Так что это всё теория; небольшая часть оборудования с поддержкой MU-MIMO, протестированного нами, выглядит неплохо – но это больше помогает честному распределению пропускной способности между MU-MIMO-клиентами, чем увеличению скорости на одного клиента. Когда мы проверяли роутер с поддержкой MU-MIMO, подсоединив к нему двух клиентов с поддержкой MU-MIMO, это повысило скорость каждого из них не более чем на 20%. Все ваши устройства, скорее всего, поддерживают SU-MIMO, и оно позволяет общаться с точкой доступа только одному устройству в один момент времени. Так что если у самого быстрого из ваших устройств будет поддержка 2х2, вы и получите в результате скорости для 2х2.

Пока что мы раздербанили этот роутер с «AC5300 до 5,3 Гбит/с» до передатчиков, скорость которых заявляется в 2,166 Гбит/с. Затем мы обсмеяли «увеличение скорости благодаря компрессии», которое никак не поможет передаче JPEG, MP3, HTTP-страниц, сжатых gzip, и, по сути, всего остального – что уже снижает нашу скорость до 1,732 Гбит/с. Теперь мы обнаружили, что можем соединиться только с двумя из этих четырёх MIMO-потоков, что снижает скорость до 866 Мбит/с.

Казалось бы, и всё. Но нет, к сожалению. Вы никогда не увидите устройство, передающее данные со скоростью физического уровня, кроме как в специально настроенном потоке UDP-трафика в комнате, изолированной от радиоволн и защищённой от радиоэха.




Изолированная от радиоэха комната в отделении исследований антенн в Фракийском университете им. Демокрита в Греции. Покрывающие поверхности пирамидки сделаны из радиопоглощающего материала – вспенённой резины с примесями углерода и железа.


В идеальных условиях реального мира (на дистанции в 3 метра, без стен, без помех и конкурирующих сетей), одно качественное устройство может достичь от 1/3 до 2/3 скорости физического уровня на канал, умноженной на количество потоков MIMO. Адаптер Qualcomm Atheros AR9462 802.11n 2x2 в моём Acer C720 Chromebook (и в небольшой армии дешёвых ноутов, которые мы проверяли) достигают порядка 205 Мбит/с, примерно 2/3 скорости физического уровня на 5 ГГц, 64-QAM, на потоках MIMO шириной 40 МГц. TP-Link Archer T4U и Linksys WUSB-6300 802.11ac адаптеры на USB3, используемые нами – также устройства 2×2 – могут выдавать почти 350 Мбит/с, что составляет 40% от физического уровня. Macbook Pro с Broadcom BCM94360CS, в паре с правильным роутером, могут выжать до 600 Мбит/с – но это адаптеры 3×3, что возвращает их обратно в промежуток «1/3 – 2/3».

Теперь вспомним, что большую часть времени мы не будем находиться в 3 метрах от роутера на линии прямой видимости – это примерно половина причин, по которым мы используем беспроводные технологии, ведь они нужны, чтобы мы могли свободно перемещаться по всему дому. Вы будете в 10 метрах, с двумя-тремя стенами между вами и роутером, и тогда вы получите уже порядка 80 Мбит/с… Это предполагая, что у вас очень хорошее клиентское устройство, хорошая точка доступа, и другие люди и устройства не борются за внимание этого роутера.



Оба устройства используют чипсет Realtek RTL8812au 2x2 802.11ac, но получается это у них очень по-разному


Если вам ещё не совсем опротивела эта тема… многие из этих устройств страдают проблемами с направлением. Linksys WUSB-6300 работает с почти одинаковой скоростью в обеих направлениях, но Qualcomm AR9462 и Archer T4U гораздо лучше работают на получение данных [download], чем на отправку [upload], при этом скорость отправки часто может быть аж в 2 раза меньше, чем скорость получения, или ещё хуже… И разные устройства, даже использующие один и тот же чипсет, могут работать очень по-разному (WUSB-6300 и T4U оба используют Realtek RTL8812au).

Проверка WiFi – дело очень запутанное.



История двух проблем: сигнал и помехи


Максимальная длина кабеля у проводного Ethernet составляет 100 м – его можно протянуть через поле для американского футбола, и ещё останется. Быстродействие на 100 м такое же, как на 10. С WiFi результат будет, какой получится; оно будет зависеть от силы радиосигнала, от расстояния, от препятствий, от многолучевого распространения — и всё это прямо влияет на скорость и качество соединения. Довольно легко бывает сконцентрироваться на силе радиосигнала, чтобы решить все проблемы. Нас натренировали искать «больше палок» в индикаторе соединения, будь то WiFi или мобильная связь. Кажется, что решение проблемы обманчиво простое: прибавить мощности передатчику! Больше палок! Если вы живёте в большом доме с большим двориком, тогда для вас всё просто – больше палок, больше скорость, все довольны.

К сожалению, история не заканчивается на силе сигнала: приходится думать о помехах, и вот тут всё реально усложняется.

Если на вашем Ethernet-кабеле есть помехи, вы считаете, что это проблема, и устраняете её. Если у вас есть помехи на радиосигнале WiFi сети, вы считаете, что просто не судьба, и продолжаете жить с этим. Проще говоря, любые помехи на той же частоте, на которой работает WiFi, подавляет сигнал примерно так же, как любой шум мешает разговору людей. В этом смысле можно решить, что более сильный сигнал решит все проблемы – ведь если громко играет музыка и работает кондиционер, вы просто говорите ГРОМЧЕ!

Пока что всё интуитивно понятно: если вас не слышат, говорите громче, проблема решена. Это популярный подход, и мы использовали и делали обзоры многих устройств, которые поступают именно так: Netgear Nighthawk, Orbi, Archer C7, Google Wifi – все они выдают достаточно радиосигналов, чтобы разозлить соседа через три дома от вас. Проблема только в том, что WiFi на самом деле работает не так.



Тонем в соседских WiFi


Скажем честно: большинство из вас будет не против тонуть в соседских WiFi, если у вас будет роутер помощнее (мы тоже так думаем). Мы возвращаемся к той интуитивной модели разговора: сигнал от соседских WiFi слабый, и если наш будет сильнее, мы заглушим их сигналы, и они пусть либо обтекают, или сами покупают роутер помощнее, верно?

Очень человеческий подход, но не очень эффективный. Представьте себе разговор в набитом битком баре: вам очень интересно узнать, что говорит ваш друг или ваш романтический партнёр, но вы соревнуетесь с разговорами по обе стороны от вас и с музыкой. Естественно, вы говорите громче! К сожалению, все остальные люди тоже начинают говорить громче, что и приводит нас к игре с нулевой суммой, когда все орут и никто ничего не понимает.



Если бы это был бар, работающий по стандарту 802.11, в один момент времени говорить бы мог только один человек


Беспроводные сети так не работают. Стандарты предотвращают ситуацию, в которой устройства должны перекрикивать друг друга. Вместо метода шумного бара с соревнованиями за канал передачи, каждое устройство должно подождать своей очереди, чтобы «говорить» чётко, без помех от других устройств. Технически говоря, сеть WiFi – это область коллизий, и эта принудительная вежливость помогает избежать коллизии пакетов. И это стоит делать, ибо коллизии случаются, после чего оба устройства должны останавливать передачу, ждать случайное время, пробовать снова – что, по идее, должно помочь одному устройству «поговорить» раньше другого, чтобы они снова не заглушили друг друга. Если они выберут одинаковое случайное число, снова произойдёт коллизия, и всё начнётся сначала.

Большинство технарей это понимают, но многие не догадываются, что в области коллизий находятся не только ваши WiFi-устройства, но все WiFi устройства на одном канале. Любая, повторяю, любая передача на одном и том же канале забивает канал, даже если это другая сеть с другим SSID и WPA-ключом. Спецификации 802.11 используют Clear Channel Assessment [оценку степени свободы канала], чтобы определить, занят ли канал, или свободен, и если CCA говорит «занято», устройство ждёт своей очереди. Если ваш ноутбук, телефон, планшет может слышать другую преамбулу 802.11 на -82 дБм, будь то ваша сеть или чужая, оно должно сидеть тихо, заткнуться и ждать своей очереди. Даже если ваше устройство не понимает преамбулу, любого радиосигнала силой в -62 дБм достаточно, чтобы сделать канал «занятым» для сетей 802.11a/b/g/n, а -72 дБм – для сетей 802.11ac. Это не особо сильный сигнал – мы часто можем наблюдать десяток или более SSID с силой -82 дБм, находясь у себя в комнате. Дальше – хуже. Даже если роутер соседа стоит с другой стороны дома и даёт сигнал лишь в -90 дБм, вы ещё не избавлены от проблемы – ноутбук их сына может быть в спальне, расположенной близко от вашей, и передавать сигнал в -58 дБм.

Кроме увеличения скорости, сети на 5 ГГц лучше сетей на 2,4 ГГц именно поэтому. Плюс сетей 2,4 ГГц в том, что у них лучше дистанция и проницаемость сигнала, а минус — в том, что у них лучше дистанция и проницаемость сигнала. В многоквартирном доме или в жилом квартале с частными домами размером с почтовый ящик ваши устройства будут видеть сети 2,4 ГГц и делить с ними эфирное время на расстояниях в 3-4 раза больше, чем они смогут видеть сети на 5 ГГц.



Когда дальность и проницаемость WiFi-сигнала – это хорошо


Когда дальность и проницаемость WiFi-сигнала – это плохо

Соревнование с самим собой

Если вы увлекаетесь «интернетом вещей», и у вас в доме есть всё, от лампочек Hue и холодильников Samsung до умных дверных замков и термостатов, надеюсь, вы внимательно прочитали предыдущий раздел – именно из-за этого ваш WiFi периодически работает плохо, а устройства отваливаются от сети, несмотря на то, что во всём доме связь на 4 палки. Если ваш «умный телевизор» показывает 4К фильмы с Netflix, ваш ребёнок смотрит YouTube, а супруг режется в DOTA, то для термостата может просто не хватить пропускной способности, и добавление мощности радиосигнала проблему не решит.

И когда мы добавляем всё больше устройств, и наши соседи добавляют устройства, проблема становится всё хуже. Более мощные устройства – это обоюдоострый меч; чем выше мощность TX и чувствительность RX, тем шире область коллизий – и тем больше устройств соревнуются за эфирное время друг с другом. Если упростить, то эта задача решается через сети низкой мощности, не распространяющиеся слишком далеко, с работающим роумингом, когда одна точка доступа передаёт вас другой, пока вы ходите по дому. Это ограничивает количество устройств в каждой области коллизий и освобождает частоты в каждом помещении (поскольку разные помещения не соревнуются друг с другом).



И что теперь – ячеистая топология сетей?

Wi-Fi mesh обычно рекламируют через понятные слова о силе сигнала. Получайте больше палок везде! Реальная польза mesh-сетей – не такая грубая, как простое усиление сигнала. Это-то как раз просто – ставьте мощный передатчик, берите чувствительный приёмник и идите гулять. Для этого и mesh не нужен – какой-нибудь Archer C7 покроет серьёзные расстояния не дороже, чем за $100. Mesh-сети интереснее всего использовать в виде множества точек доступа для разделения сети на небольшие области коллизий, чтобы устройства меньше соревновались друг с другом. Чем ближе ваши устройства к точке доступа, тем меньше задержки, нужно меньше энергии, и, что главное – меньше устройств-конкурентов, если они будут достаточно умными, чтобы использовать минимально необходимую силу сигнала.

Пока эти разработки ещё в начале пути. Хотя инженеры-сетевики, устанавливающие точки доступа WiFi в конференц-центрах и аэропортах, обычно разбираются в таких концепциях, как принудительно низкая мощность сигнала и грамотное использование спектра для ограничения коллизий, большинство устройств для дома и мелкого бизнеса разрабатываются и рекламируются проще – сильный сигнал, большие показатели, больше мощности. Но система медленно эволюционирует.

Plume — очевидный хороший пример такой стратегии нового поколения, упирающий на разделение сети на более мелкие области коллизий, вместо того, чтобы максимизировать мощность в попытках улучшить идеальное быстродействие одного клиента. Но и вся индустрия постепенно подтягивается. Eero пока ещё использует одинаковый канал для всех устройств, но более агрессивно разделяет клиентов по частотам, а не пытается впихнуть всё в диапазон теоретически более «быстрого» сигнала на 5 ГГц. Новый Linksys Velop распределяет частоты 2,4 ГГц – используя разные каналы для разных точек доступа – но использует одну и ту же пару 5 ГГц на каждого (очень плохо, они бы могли использовать разделяемую транспортную сеть связи [backhaul] на 5 ГГц, и предлагать клиентам разные каналы на 5 ГГц). AmpliFi HD также разделяет канал 2,4 ГГЦ, используя разделяемый канал на 5 ГГц для транспортной сети связи, и предлагающий разные каналы на 2,4 ГГц на каждой точке доступа. А более новые прошивки по-умному распределяют клиентов на эти 2,4 ГГц, не соревнующиеся друг с другом или с сетью 5 ГГц.
 

Заключение


Сила радиосигнала – это ещё не всё. И простого теста скорости недостаточно. Чем больше устройств нужно обслуживать – ваши, вашей семьи, ваших соседей – тем сложнее всё работает. Интернет вещей позаботится о росте количества таких устройств, ведь всё, от холодильников до стиральных машин и лампочек будет требовать доступа в интернет.

Если вы технарь, и вам интересно увеличение вашей сети WiFi, вы меньше смотрите на AC-рейтинг, и больше на то, сколько устройств вы используете, на скольких частотах вы можете сделать доступ, и насколько эффективно ваши устройства передают сигналы на роутер. Проще всего подключать по проводам максимальное количество устройств – чем меньше устройств соединяются по WiFi, тем меньше их соревнуются друг с другом, тем лучше он работает. То же касается и точек доступа – если транспортная сеть до роутера устроена при помощи проводов (Eero, Plume, Velop и Ubiquiti UAP можно подключать по проводам), они смогут покрыть больше частот, не конфликтуя друг с другом.

Дата последнего изменения: 26.03.2017
2003-2017 © iven.by
Ноутбуки. Компьютеры. Мониторы.
Комплектующие. Оргтехника. Бытовая техника. Электроника.

В торговом реестре с 20 декабря 2012 года, номер 147380
ООО «Компьютеры Айвен», УНП 192776859